
1

Nico Ludwig (@ersatzteilchen)

Collections – Part II

2

2

● Collections – Part II
– Arrays revisited

● N-dimensional Arrays
● C's VLA
● Variable Argument Lists
● Value and Reference Semantics of Elements
● Shortcomings

– A Way to categorize Collections

– Indexed Collections

● Lists
● Basic Features and Examples
● List Comprehensions
● Size and Capacity

TOC

3

Initial Words

Yes, my slides are heavy.

I do so, because I want people to go through the slides at their own pace w/o having to watch
an accompanying video.

On each slide you'll find the crucial information. In the notes to each slide you'll find more
details and related information, which would be part of the talk I gave.

Have fun!

4

4

The Collection Story
● A very important topic in programming besides algorithms are collections of data.

– Virtually, data collections were present before algorithms: computing dealt with mass data from the beginning (business data).

– The so called "data processing" was applied to predict the results of the US presidential elections in 1952 for the first time basically.

● Terminology alert: Collections are called containers in C++.

● Nowadays we have to deal with huge amounts of data in databases.

● Back to programming with data:
– Data is held in objects. – "Object" is not a term dedicated to oo-languages, it could be a Pascal RECORD instance as well.

– Understanding and using collections is key for the art and craft of programming apart from algorithms.

– In most programming languages (languages) we already have a first class citizen to deal with collections of data: arrays!

● Let's begin our discussion of collections with arrays, or more precisely, collections following the concept of an array.

● Terminology alert for German programmers: Stick to calling an array array, not "Feld", even though German literature does!
– A Feld is a field of a UDT! This is an example where translation is really inappropriate, leading to ridiculous misunderstandings.

● In 1952 the UNIVAC I (UNIVersal Automatic
Computer I) was used for the prediction for the
presidential election.

● Mind that compiler and run time usually also always
use the term "array". Either they are themselves
only printing English messages, or they print
German messages, but stick to special terms. – The
word "array" is a special term, not a word that needs
to be translated!

5

5

Arrays – Part I
● Generally, we call a collection an array if following statements hold true:

– The collection has the semantics of a table.

– The "rows" of that table, the elements or "slots", can be accessed with a numeric "row number", the so called index.

● Array indexes usually start at 0 (0-based indexing), the index referencing the last element boils down to length - 1. In Basic, arrays use 1-based indexing.

– The elements of an array can be accessed randomly with O(1) complexity. – This is very fast!

– (The elements of an array usually have the same static type, C++ calls this the element type.)

● In many languages arrays have integrated syntactical support, e.g. in Java, C++, C#, VB, JavaScript etc.
– Creation of arrays with initializer lists and the []-notation:

● Many languages support an initialization syntax for arrays.

● In C++ automatic arrays require to be created with a constant length known at compile time.

● Other languages like Java and C# create arrays only on the heap, and therefor these languages also accept non-constant lengths for arrays.

● Dynamically created arrays (Java/.NET-heap or C++-freestore) can have the size 0, automatic arrays can't.

– Accessing and manipulating array elements by accessing them with the index/subscript/[]-operator (C++, Java, C#):

● The array number2 contains only elements of value 0 with the exception of the element at index 3. Arrays having "gaps" are called sparse arrays.

// C++
int numbers[] = {1, 2, 3, 4, 5};

// Java
int[] numbers = {1, 2, 3, 4, 5};
int[] numbers2 = new int[5];

1 2 3 4 5

numbers[0]

numbers (C/C++)

numbers[length - 1]

// Reading the element at index 3:
int aNumber = numbers[3];

// Writing the value 12 to the element at index 3:
numbers2[3] = 12;

0 0 0 12 0 numbers2

a sparse array

● The .NET framework allows to create arrays with
index-bases (i.e. lower bounds) different from 0 with
the method Array.CreateInstance(). This is also
possible for multidimensional arrays.

● Honorable mention: Fortran's arrays use 1-based
indexing by default. However, it also supports to
create arrays with other indexing-bases by defining
lower and upper bounds.

6

6

● Support of arrays in various languages:
– Arrays are often the only collection that is integrated into a language, i.e. no extra library imports are required to use them.

● In C/C++ the array elements reside in a contiguous block of memory, which enables the fundamental concept of pointer arithmetics in C/C++

● Therefor C++ requires array elements to be of the same static type because then all elements have the same size to make pointer arithmetics work!

– Arrays have a fixed length (i.e. the count of elements) after creation that can't be changed. – We can not add or remove elements.

● This is not the case for JavaScript arrays (also called "array-like objects")!

– Arrays can manage objects of dynamic or static types depending on the support of the language.

● Statically typed languages (e.g. C++) allow only array elements of the same static type:

● Dynamically typed languages (e.g. JavaScript) allow individual array elements to be of any type:

– Arrays are a primary construct of imperative languages. In opposite to immutable lists used in fp languages.

1 2 3 4 5

lower address

numbers (C/C++)

higher address

contiguous block of memory

// C++
int numbers[5]; // numbers can only store five ints
Car parkingBay[100]; // parkingBay can only store 100 Car instances

// JavaScript
var objects = [5, "five", {x: 34, y: 4.4}]; // objects contains an integer, a string and an object

Arrays – Part II

● E.g. F# as a functional programming language does
have an extra ugly syntax for array-creation, -
accessing and -manipulation; F#'s arrays are
mutable! So, F# clearly states immutable collections
(i.e. F# lists) being more primary than arrays!

7

7

● Arrays can be n-dimensional (multidimensional) in many programming languages.
– N-dimensional arrays can be used to build matrix data structures.

– 2-dimensional arrays can be seen as an abstraction of tables
having more than one column. 3-dimensional arrays are cubes, higher dimensional ones are hypercubes.

– Terminology alert: sometimes one-dimensional arrays are called vectors!

● Languages may support two kinds of n-dimensional arrays:
– Rectangular n-dimensional arrays. Here a 2-dimensional 3x3 matrix (one big object):

– Jagged n-dimensional arrays are typically build as arrays of arrays (some individual arrays):

// C#
int[,] rectangularArray = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}; // Represents a 3x3 matrix.

// C#
int[][] jaggedArray = new int[3][];
// Set the values of the sub-arrays in the jagged array structure:
jaggedArray[0] = new[] {1, 2, 3, 4};
jaggedArray[1] = new[] {6, 7};
jaggedArray[2] = new[] {8, 9, 0};

1 2 3 4

8 9 0
6 7 jaggedArray (.NET)

jaggedArray[0]
jaggedArray[1]
jaggedArray[2]

C# – leaving away the element type name on creating
Anonymous arrays with array initializers
// Assume we have a method with a string-array parameter:
private void AwaitsAStringArray(string[] strings);
// Pass a newly created array with an array initializer:
AwaitsAStringArray(new string[]{ "Monica", "Rebecca", "Lydia" });
// Alternatively leave the type name away on the new keyword:
AwaitsAStringArray(new[]{ "Monica", "Rebecca", "Lydia" });

A=(
a11 a12 a13

a21 a22 a23

a31 a32 a33
)

rectangularArray=(
1 2 3
4 5 6
7 8 9)

Arrays – Part III

● The mathematical numeration of matrix elements is
row-major, i.e. the first index is the row's index and
second index is the column's index.

● .NET's framework design guidelines suggest using
jagged arrays instead of rectangular arrays. The
reasoning behind this is the low propability of
wasted space, when arrays get sparse and the CLR
is able to optimize index access to jagged arrays
better than for rectangular arrays.

● Rectangular arrays can consume very much
memory if it has many dimensions (even if the array
is not filled).

● Jagged arrays can also be defined in Java and
Groovy.

8

8

● We should also talk about naming.

● Usually the identifier of array objects reflect the "multiplicity of something". This is called identifier pluralization.
– E.g. a double array storing several wages could just be called wages.

● A variable denoting the count of elements in an array is commonly accepted to be a candidate for a variable prefix: 'n'.
– When wages denotes an array of, well, wages, it seems logical to have another variable denoting count of elements in that array

with the count of numbers, or in short nWages.

// C#
// "wages" is just an array storing multiple wages.
double[] wages = {petersWage, christinasWage, nicosWage};
double allWagesToPay = .0;
for (double wage in wages) {

allWagesToPay += wage;
}

Arrays – Part IV

// C#
// "nWages" represents the count of elements in the array wages.
int nWages = wages.Length;
Console.WriteLine($"We have to pay {allWagesToPay} of wages for {nWages} persons");

9

9

● Honorable mention: C's variable length arrays (VLAs)
– Since C99, C supports painless creation of arrays of variable length:

– Because VLAs are created on the stack in most cases, i.e. w/o malloc() and free() creation is super fast!

– Further benefit: having no compile time constants for array lengths closes a source of serious bugs.

– The downside: VLAs cannot be resized. The standard disallows VLAs of size 0.

● C# kind of supports VLA using stackalloc and pointers, but this an unsafe feature.

● (C99 also supports flexible array members for structs.)

● VLAs are currently not supported by C++ (2019).

Honorable mention: C's variable length arrays (VLAs)

// >= C99 VLA example
void create_VLA(size_t length) {

int myArray[length]; // Yes, myArray resides on the stack!
 myArray[length - 1] = 6;
 printf("%d", myArray[length - 1]); // prints a 6
 const size_t actualLength = sizeof(myArray)/sizeof(int);
 assert(length == actualLength);
}

10

10

● Java/.NET support argument lists of variable length, which are based on dynamically created arrays.

– Here, we see Java's ellipsis-operator and .NET's ParamArrayAttribute (applied with params keyword in C#) in action.

– Both idioms create a dynamic one dimensional array on the heap storing the passed arguments.

– Both idioms support an arbitrary list of parameters in front of the variable parameters parameter.

– Both idioms disallow any explicitly declared parameter after the variable parameters parameter.

– In case no arguments are passed, the created array just has a length of 0.

● Also constructed arrays can be passed as a single argument to a method with variable argument list:

Arrays – Argument List of variable Length

// Java
public static void variableArguments(String... args) {
 assert String[].class == args.getClass();

for (final String arg : args) {
System.out.print(" " + arg);

 }
}

variableArguments("Hello", "World, ", "see", "my", "collections!");
// >Hello World, see my collections!

// C#
public static void VariableArguments(params string[] args) {
 System.Diagnostics.Debug.Assert(typeof(string[]) == args.GetType());

foreach (string arg in args) {
Console.Write(" " + arg);

}
}

VariableArguments("Hello", "World, ", "see", "my", "collections!");
// >Hello World, see my collections!

VariableArguments(
new String[]{ "Hello", "World, ", "see", "my", "collections!" });

// >Hello World, see my collections!

VariableArguments(new []{ "Hello", "World", "see", "my", "collections!" });
// >Hello World, see my collections!

● Because arrays are handled covariantly in Java and
C#, we can have a method with a variable argument
list of Object/object and pass anything derived from
Object/object.

11

11

● Esp. C is well known for its feature of functions, which can cope with variable argument lists (vargs):

– Featured by the ubiquitous function printf(), applied via the ...-operator (ellipsis-operator).

– The mandatory vargs' first argument must be interpreted, to guess how many vargs follow.

– Vargs are harmful: It's a way to introduce security leaks through stack overruns. (Just call sum(4, 1, 2, 3) and see what happens.)

● How does it work? The vargs-features works very near the metal:
– The compiler calculates the required stack depending on the arguments and decrements the stack pointer by the required offset.

– As arguments are laid down on the stack from right to left, nNumbers is on offset 0.

– Then nNumbers is analyzed and the awaited offsets are read from the stack. Here an offset of, e.g., 4B for each int passed to sum().

Excursus: Variable Length Argument Lists in C

#include <stdarg.h>
// C variadic function example
int sum(int nNumbers, ...) {

int sum = 0;
 va_list args;

va_start(args, nNumbers);
for (int i = 0; i < nNumbers; ++i) {

nSum += va_arg(args, int);
}

 va_end(args);
 return sum;
}

const int full_sum = sum(3, 1, 2, 3);
// >6

Good to know
All standard C/C++ functions have the calling convention
__cdecl. Only __cdecl allows variable argument lists,
because only the caller knows the argument list and only
the caller can then pop the arguments. __stdcall functions
execute a little bit faster than __cdecl functions, because
the stack needs not to be cleaned on the callee's side (i.e.
within a __stdcall function).

● The calling convention __cdecl is a C/C++ compiler's default, __stdcall is the
calling convention of the Win32 API, because it works better with non-C/C++
languages. __cdecl requires to prefix a function's name with an underscore when
calling it (this is the exported name, on which the linker operates). A function
compiled with __stdcall carries the size of its parameters in its name (this is also
the exported name). – Need to encode the size of bytes or the parameters: If a
__cdecl function calls a __stdcall function, the __stdcall function would clean the
stack and after the __stdcall function returns the __cdecl function would clean
the stack again. - The naming of the exported symbol of __stdcall functions allow
the caller to know how many bytes to "hop", because they've already been
removed by the __stdcall function. Carrying the size in a function name is not
required with __cdecl, because the caller needs to clean the stack. - This feature
allowed C to handle variadic functions with __cdecl (nowadays the platform
independent variadic macros can be used in C and C++).

● Other calling conventions:
● pascal: This calling convention copies the arguments to the stack from left to

right, the callee needs to clean the stack.
● fastcall: This calling convention combines __cdecl with the usage of registers

to pass parameters to get better performance. It is often used for inline
functions. The callee needs to clean the stack. The register calling convention
is often the default for 64b CPUs.

● thiscall: This calling convention is used for member functions. It combines
__cdecl with passing a pointer to the member's instance as if it was the
leftmost parameter.

● In this example the RV (EAX on x86) register can only store values of 4B. In
reality the operation can be more difficult.
● For floaty results the FPU's stack (ST0) is used.
● User defined types (e.g. structs) are stored to an address that is passed to the

function silently.
● It is usually completely different on micro controllers.

12

12

● C/C++ allow the definition of arrays that act like "n-dimensional" arrays.
– "N-dimensional" arrays are equivalent to "normal" arrays in C/C++.

● I. e. the memory layout is equivalent for both. N-dimensional arrays have no genuine concept in C/C++!

– C/C++ provide alternative syntaxes for defining and accessing "mimicked" n-dimensional arrays.

– The definition/initialization syntax differs, however.

● Creation and memory layout:

● The memory layout of C/C++ arrays is done by row-major order, in which the rows are laid down in linear memory after another.

● The elements of multidimensional arrays in C/C++ are accessed with multiple applications of the []-operator:

● The way C/C++ arrange n-dimensional arrays is critical for optimizations in the CPU's cache and vectorization.
– (But to gain maximum performance, developers have to access elements in a special order.)

– Closely related is the performance gain when using the GPU to process large amounts of data to relief the CPU.

– You should notice that n-dimensional arrays are no topic for application programming, but for high performance computing.

// Creates an "n-dimensional" 2x3-int-array in C++:
int mArray[2][3] = {{1, 2, 3}, {4, 5, 6}};

// Creates a "normal" 6-int-array in C++:
int array[6] = {1, 2, 3, 4, 5, 6};

1 2 3 4 5 6 array

mArray1 2 3 4 5 6

for (int i = 0; i < 2; ++i) { // 1. "dimension" (columns)
for (int j = 0; j < 3; ++j) { // 2. "dimension" (rows)

mArray[i][j] = 0; // Uses i and j as "coordinates".
}

}

for (int i = 0; i < 6; ++i) {
array[i] = 0; // Uses i as index.

}

Multidimensional Arrays in C/C++

● Data vectorization means that blocks of data, such
as arrays, are not manipulated element-wise in
loops, but manipulated as a whole. CPUs provide
special instructions to apply vectorization.

13

13

Car{ Power = 120 }Car{ Power = 180 }

● An important point we've to clarify, is, whether collections hold copies or references to "contained" objects.
– We have to understand, how the language we use handles this.

– Do the collection and the contained elements share the same lifetime or not?

● If a language defines value semantics for contents of variables, arrays will hold copies.
– E.g. an array of int in C/C++:

● If a language defines reference semantics for contents of variables, arrays will hold references.
– E.g. an array of reference type (the class Car in this example) in C#:

// C++
int value = 42;
int numbers[5];
numbers[3] = value; // Copies the content of value. ? ? ? 42 ? numbers

42 value

numbers[3] = 80; // Doesn't modify value.

80

C# – automatically implemented properties
public class Car {

// Power's backing field will be created automatically!
public int Power {get; set;}

}

// C#
Car myCar = new Car{ Power = 120 };
Car[] parkingLot = new Car[5];
parkingLot[3] = myCar; // Copy a reference to myCar.

parkingLot[3].Power = 180; // Will also modify myCar!
null null null null parkingLot

myCar

C# – object initializers
// Create a Car object and set the property
// Power:
Car car = new Car();
car.Power = 180;
// Alternatively create a Car object and set
// the property Power within one expression
// as object initializer:
Car car2 = new Car{ Power = 180 };

Value and Reference Semantics of Elements

Good to know
Think:
value semantics: copy,
reference semantics: shared ownership

14

14

● Some languages allow holding references to objects as array elements, we can exploit this "layer of indirection".
– E.g. we can create arrays with elements whose static type is the type of a base type and whose dynamic type is any object of

derived type.

● In C++ we can add this extra layer of indirection with pointers to objects of a base type.
– It allows to use the elements of an array polymorphically:

● The array parkingLot holds elements of the static type Vehicle*.

● The pointers can point/indirect to any subtype of Vehicle (in this case Car and Bike).

● Through the pointers held in parkingLot, the overridden method Drive() can be called dynamically.

– The application of polymorphism in arrays (and also other collections) is a very
important feature that is also present in other oo-languages. => It is the basis for
object-based collections.

// C++11:
const Car car;
const Bike bike;
const Vehicle* const parkingLot[] = {&car, &bike};

for (const Vehicle* const vehicle : parkingLot) {
vehicle->Drive();

}
// >zooming off...
// >woosh...

// C++:
class Vehicle {
public:
 virtual void Drive() const = 0;
};

// C++:
class Car : public Vehicle {
public:

void Drive() const {
 std::cout<<"zooming off..."<<std::endl;
 }
};

// C++:
class Bike : public Vehicle {
public:

void Drive() const {
 std::cout<<"woosh..."<<std::endl;

}
};[0] [1]

(Car)

(Bike)

parkingLot (Vehicle*[2])

Homogeneous and Heterogeneous Arrays – dynamic and
static Type of Elements

● In most languages the array elements need to be of
the same static type. JavaScript arrays can be really
heterogeneous, but JavaScript does only have
dynamic types altogether...

15

15

● Most languages have arrays that don't expose their length. So programmers have to pass the array's length separately.
– More modern languages/platforms do have arrays that expose their length, e.g. Java, .NET and JavaScript, but not C/C++!.

– (C++11 provides the STL wrapper type std::array for working with arrays with compile time known size.)

● Esp. in C/C++ arrays are directly associated to physical memory. This is a further source of potential bugs and problems.
– Therefor higher level C++ STL container types should be used.

● The length (i.e. the count of elements) of an array is fixed.
– Not so in JavaScript.

● .NET's framework design guidelines suggest using "genuine" collections instead of arrays in public interfaces.

Shortcomings of Arrays

16

16

● Object-based vs. generic

● Indexed, sequential vs. associative
– Terminology alert: The C++ STL tells sequential (those are indexed and sequential containers) from associative containers.

– Terminology alert: Java tells Collections (sequential collections (and "somehow" indexed collections also)) from Maps.

● Ordered or unordered

● Mutable or readonly

● Synchronized or unsynchronized

Platform-agnostic Categorization of Collections

17

17

● We start with discussing indexed, sequential and associative collections, beginning with indexed collections.

● Indexed collections have following basic features:
– Elements can be accessed and modified via an index number (0-based or not).

– Elements have a defined order.

– Elements can be randomly accessed (usuallay with O(1) complexity – this is very fast).

● Ok, these basic features do just describe arrays as collections, but indexed collections have more features:
– The collection exposes the count of elements it holds, (i.e. length; with 0-based indexes the last index would be length - 1).

– Elements can be added or removed after creation of an indexed collection.

● The length of an indexed collection can grow or shrink during run time!

● Esp. in C/C++, arrays are a major source of problems, indexed collections help, because they expose their length.

Indexed Collections – Part I

● Java provides the marker interface RandomAccess,
which indicates collections that provide random
access.

18

18

● In modern languages we can find following indexed collections beyond arrays:
– "Genuine" lists or vectors

– Deques (singular deque, pronounced [dɛk], for double ended queues)

● Strings are a special kind of indexed collection in many languages. In C/C++ c-strings are just arrays.
– On some platforms (Java, .NET) strings act as readonly indexed collections.

● I.e. the elements of strings (the characters) can't be modified and elements can't be added or removed to strings.

● String operations will not modify the original string, but a new string with a content different from the original string will be created. This is called the
"defense copy pattern".

– The above mentioned platforms do also define mutable string types.

● Those encapsulate an original string object and allow accessing it with an interface providing mutating operations.

● Examples: StringBuilder (.NET/Java), StringBuffer (Java), NSMutableString (Cocoa), std::string (C++).

● (To make working with string-like types simpler in Java, String, StringBuffer and StringBuilder implement the interface CharSequence.)

Indexed Collections – Part II

19

19

● An important shortcoming of arrays in C/C++ is their undefined behavior, if indexes exceed array bounds.

● Modern platforms (Java/.NET) introduce bounds checking of array-access via indexes during run time with exceptions:

● Indexed collections beyond arrays (e.g. lists) usually support bounds checking with exceptions as well.

// C#:
int nNumbers = 5;
int numbers = new int[nNumbers];

numbers[10] = 10; // Well defined! Will throw ArgumentOutOfRangeException.

// We could also handle ArgumentOutOfRangeException (not recommended):
try
{

int value = numbers[-3]; // Well defined! Will throw ArgumentOutOfRangeException.
}
catch (ArgumentOutOfRangeException)
{

Console.WriteLine("ArgumentOutOfRangeException thrown.");
}

// C++
int nNumbers = 5;
int numbers[nNumbers];
numbers[10] = 10; // Undefined behavior! Above number's bounds.
int value = numbers[-3]; // Undefined behavior! Below number's bounds.

Indexed Collections and "Bounds checked Arrays"

Good to know
A variable denoting the count of elements in an
array (or any kind of "collection"), is commonly
accepted to be a candidate for a variable prefix: 'n'.
The idea is, that when numbers denotes an array
of, well, numbers, it seems logical to have another
variable denoting count of elements in that array
with the count of numbers, or in short nNumbers.

20

20

● Now its time to introduce our first collection "beyond" arrays: the list.
– Java/.NET provide a implementation of list: ArrayList.(.NET: System.Collections.ArrayList, Java: java.util.ArrayList) ArrayList is an

object-based collection, let's understand what that means for us.

● Terminology alert: in Lisp and C++ lists are linked lists and no indexed collections!

● ArrayLists can only store objects of the static .NET type Object! Therefor ArrayList is said to be an object-based collection.
– That's no problem! – The dynamic type stored in ArrayList can be any type derived from Object.

– Each .NET type is derived from Object, therefor any .NET type can be stored in ArrayList as dynamic type.

● There is just one quirk with object-based collections: we have to use downcasts to get the formerly stored values back!

– This means: we as programmers have to remember the types of the stored values, i.e. their dynamic types!

// C#:
// Create an ArrayList of two elements (passing an int[] to the ctor):
ArrayList aList = new ArrayList(new[]{42, 18});
// 42 and 18 are then stored on the indexes 0 and 1 (ArrayList's index is 0-based).
// When we fetch the values back, we just get objects of the static type Object back:
object the42 = aList[0];
object the18 = aList[1];
// We have to use cast contact lenses to get the dynamic types out of the objects:
int the42AsInt = (int)the42;
// We can also cast directly from the indexer notation:
int the18AsInt = (int)aList[1];

// .NET System.Collections.ArrayList (C#)
public class ArrayList { // (Details hidden)

// The "operator[]":
public object this[int index] {

get { /* pass */ }
 set { /* pass */ }

}
}

[0] [1]

(int)(int)

aList (Object[2])
(logical representation)

Indexed Object-based Collections

● Mind how C#'s indexer (i.e. the "operator[]") makes
using ArrayLists look like arrays.

21

21

● Creating the empty list names:

● Then we can add two elements like so:

● We can access the elements of a list like so (bounds checked):

● We can set the elements of a list to new values like so (bounds checked):

● We can get the current count of elements stored in the list:

// C#:
ArrayList names = new ArrayList();

names.Add("James");
names.Add("Miranda");

// Java:
ArrayList names = new ArrayList();

names.add("James");
names.add("Miranda");

// Get the values back (object-based collection):
object name1 = names[0]; // "James" (static type Object)
object name2 = names[1]; // "Miranda"
// Cast the strings out of the objects:
string name1AsString = (string)name1;
// We can also cast directly from the index notation:
string name2As = (string)names[1];

// Get the values back (object-based collection):
Object name1 = names.get(0); // "James" (static type Object)
Object name2 = names.get(1); // "Miranda"
// Cast the strings out of the objects:
String name1AsString = (String)name1;
// We can also cast directly from the getter-call:
String name2As = (String)names.get(1);

names.set(1, "Meredith");
System.out.println(names.get(1));
// >Meredith

names[1] = "Meredith";
Console.WriteLine(names[1]);
// >Meredith

names.add("Christie"); // Adding one more element.
System.out.println(names.size());
// >3

names.Add("Christie"); // Adding one more element.
Console.WriteLine(names.Count);
// >3

C# – collection initializers
// Alternatively create and initialize with a collection
// initializer:
ArrayList names2 = new ArrayList{ "James", "Miranda" };

List – Basic Operations

● As can be seen, in Java expressions like array[i]
just need to be replaced by list.get(i)/list.set(i).
● Groovy's syntax (Groovy is based on the Java

platform) for creating arrays does directly create
ArrayLists instead of bare arrays. (But Groovy
permits the []-operator to access ArrayLists!)

● Here we use ArrayList in Java, an alternative would
be Vector, but Vector is a (object-) synchronized
collection, which is more inefficient than the
unsynchronized ArrayList. – ArrayList should be
our default, until synchronization is needed. But if
synchronization is needed, it is better to use Java's
simple factory Collections.synchronizedList()
instead of the old-fashioned Vector.
● Vector, which was introduced with Java 1, was

synchronized from the start, because people
wanted to force multithreaded programming from
the start and Vector should then be a functional
default collection for multithreaded programming.

22

22

● Removing elements (bounds checked):

● Inserting elements (bounds checked):

● Find an element:

● Other operations (selection):

// Removes the first occurrence of "James" from names.
// - If the specified value is not in the list, nothing will be removed.
names.Remove("James");
// - If the specified index is out of bounds of the list, an
// ArgumentOutOfRangeException will be thrown.
names.RemoveAt(0);

// Inserts "Karl" into names at the specified index.
// - If the specified index is out of bounds of the list, an
// ArgumentOutOfRangeException will be thrown.
names.Insert(0, "Karl");

// Returns the index where the first occurrence of "Karl" resides
// in names or -1.
int foundIndex = names.IndexOf(value);

names.Clear();
names.AddRange(new[]{"Mary", "Jane"});
names.Reverse();

// Removes the first occurrence of "James" from names.
// - If the specified value is not in the list, nothing will be removed.
names.remove("James");
// - If the specified index is out of bounds of the list, an
// IndexOutOfBoundsException will be thrown.
names.removeAt(0);

// Inserts "Karl" into names at the specified index.
// - If the specified index is out of bounds of the list, an
// IndexOutOfBoundsException will be thrown.
names.add(0, "Karl");

// Returns the index where the first occurrence of "Karl" resides in
// names or -1.
int foundIndex = names.indexOf(value);

names.clear();
names.addAll(Arrays.asList("Mary", "Jane"));
boolean listIsEmpty = names.isEmpty();

List – Other important Operations

23

23

● (Yes, it can be done simpler. This is only an example.)

● We don't know the count of lines in advance: a list seems to be a good collection, because it can grow! Solve it with list!
// C#:
// Begin with an empty list:
ArrayList allLines = new ArrayList();

string line = null;
using (StreamReader file = new StreamReader("/Library/Logs/Software Update.log"))
{

// Read the file line by line:
while (null != (line = file.ReadLine()))
{

// Add each line to the list as String:
allLines.Add(line);

}

// Output all the read lines to the console:
for (int i = 0; i < allLines.Count; ++i)
{

// As ArrayList is object-based, we've to cast the element back to String:
string storedLine = (string)allLines[i];
Console.WriteLine(storedLine);

}
}

List – Practical Example:
Reading a File Line by Line into a List

24

24

● We could iterate over the list to search a specific entry ("2008-11-24 23:02:24 +0100: Installed \"Safari\" (3.2.1)"):

● Often collections provide more clever operations to check containment of objects directly, e.g. with .NET's method Contains():

– This code does effectively the same as the snippet above, but this time we delegate the search procedure to the list itself!

– As can be seen no loop or comparison is required, list's method Contains() does everything for us!

bool containsSafari = false;
// Iterate over all entries of the list:
for (int i = 0; i < allLines.Count; ++i)
{

// Find a certain element in the list:
string entry = (string)allLines[i];
if (entry.Equals("2008-11-24 23:02:24 +0100: Installed \"Safari\" (3.2.1)"))
{

containsSafari = true;
break;

}
}
Console.WriteLine($"Contains 'Safari': {containsSafari}");
// >Contains 'Safari': True

// Let's ask the list to find the contained element:
bool containsSafari = allLines.Contains("2008-11-24 23:02:24 +0100: Installed \"Safari\" (3.2.1)");
Console.WriteLine($"Contains 'Safari': {containsSafari}",);
// >Contains 'Safari': True

List – Practical Example:
Does the List contain a certain element?

● Java's interfaces List/Collection provide the
method contains().

25

25

● Esp. in functional programming (fp) languages there exist very sophisticated ways to create filled lists without loops.
– This is required, because lists can usually not be modified after creation in fp languages. For example in Lisp and Haskell:

– What we see here in action is called list comprehension, it means to create collections with complex content in one expression.

– Comprehensions allow to mimc closed forms (comprehensions are often implemented as mathematical procedures).

● Non-fp languages have been updated to provide list comprehensions in order to get compact expressiveness:
// F#
let numbers = [1..9]
// numbers = [0; 1; 2; 3; 4; 5; 6; 7; 8; 9]
let numbersSquaredList = [for n in 1 .. 9 -> n * n]
// numbersSquaredList = [1; 4; 9; 16; 25; 36; 49; 64; 81]
let numbersSquaredArray = [| for n in 1 .. 9 -> n * n |]
// numbersSquaredArray = [|1; 4; 9; 16; 25; 36; 49; 64; 81|]

List – List Comprehensions

-- Haskell
numbers = [1..9]
-- numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
numbersSquared = [n * n | n <- [0..9]]
-- numbersSquared = [1, 4, 9, 16, 25, 36, 49, 64, 81]

; Common Lisp (loop macro)
(loop for n from 1 to 9 collect n)
; =(1 2 3 4 5 6 7 8 9)
(loop for n from 1 to 9 collect (* n n))
; =(1 4 9 16 25 36 49 64 81)

// C# (version >= 3 provides query expressions)
var numbers = Enumerable.Range(1, 9).ToList();
// numbers = 1, 2, 3, 4, 5, 6, 7, 8, 9
var numbersSquared = (from n in Enumerable.Range(1, 9) select n * n).ToList();
// numbersSquared = 1, 4, 9, 16, 25, 36, 49, 64, 81

// Java (version >= 8 provides streams)
List<Integer> numbers

= IntStream.range(1, 10).boxed().collect(Collectors.toList());
// numbers = 1, 2, 3, 4, 5, 6, 7, 8, 9
List<Integer> numbersSquared

= IntStream.range(1, 10).map(n -> n * n).boxed().collect(Collectors.toList());
// numbersSquared = 1, 4, 9, 16, 25, 36, 49, 64, 81

// Groovy
def numbers = (1 .. 9).toList()
// numbers = [0; 1; 2; 3; 4; 5; 6; 7; 8; 9]
def numbersSquared = (1 .. 9).collect{it * it}
// numbersSquared = [1, 4, 9, 16, 25, 36, 49, 64, 81]

numbers={n | n∈N , n<10 }

numbersSquared={n2 | n∈N , n<10}

Mathematical set builder notation

● The Stream-based Java code snippet needs some
explanation: The range() method to get into int-
based list comprehensions in Java, is only available
on IntStream. And IntStream provides a stream of
int, which is not an object derived from Stream at all,
IntStream is a primitive stream. Java's specific
collector, that collects a generic Stream into a
generic List does not accept primitive streams.
Therefor we have to use boxed() to convert the
primitive IntStream into a generic Stream<Integer>
(i.e. boxing all ints), that can be consumed by the
Collectors.toList() Collector.

26

26

● When we think about the implementation of an indexed collection we can assume that it is backed by an array.
– This means that indexed collections encapsulate or simulate arrays of varying size. – That's straight forward!

– Now we'll clarify how managing of indexed collections' internal space for contained elements works.

● Most interesting are obviously methods like ArrayList's method add() in Java. It could be implemented like so:

● But the assumed implementation of add() has a serious problem: it is very inefficient!

– Every time a new element is added two operations are going on basically:

● (1) enlarge: the encapsulated array elementData is copied to a new array having the old length + 1

● (2) append: and then the new element is set as last element in the new array.

// Java: (fictive implementation of ArrayList.add())
public boolean add(Object element) {

// Enlarge and append:
 elementData = Arrays.copyOf(elementData, elementData.length + 1);
 elementData[elementData.length - 1] = element;
}

ArrayList names = new ArrayList(); // Creates an ArrayList of zero elements.
names.add("James"); // Create a new internal array of size one.
names.add("Miranda"); // Create a new internal array of size two.
names.add("Helen"); // Create a new internal array of size three.

ArrayList
- elementData : Object[]
+ add(Object element)

Indexed Collections – Size and Capacity – Part I

27

27

● Indeed the real implementation of ArrayList is more clever! ArrayList uses the idea of capacity for more efficiency.

● Let's create another empty ArrayList in Java:

– The real representation of names looks not very empty!

● The actual memory representation:
– As can be seen names is not really empty.

– names' field elementData (this is the encapsulated Object-array) has an initial length of ten.

– All elements of elementData have the initial value null.

– But names exposes a size of zero! – What the heck is going on?

● ArrayList has an initial size of zero and an initial capacity of ten!
– In modern collection APIs, collections maintain capacity and size separately, let's understand why this is a good idea ...

names (ArrayList)

elementData (Object[10])

size0

null null
// Java:
ArrayList names = new ArrayList();

Indexed Collections – Size and Capacity – Part II

null null null null null null null null

28

28

● With ArrayList's initial capacity of ten we can add ten elements, before a new elementData-array needs to be created:
– Let's begin with adding three Strings to names:

– Add another seven Strings to names:

– Then we add another, the eleventh String to names...

● ...when the capacity of the ArrayList is
exhausted, the encapsulated array
(elementData) needs to be enlarged.
– (1) A new bigger array is created and

– (2) the content of the old array is copied to the new array.

● (In this implementation, elementData is enlarged for five elements, so the new capacity is 15.)

– (3) The last element (the eleventh element) will be set to the added element.

names (ArrayList)

elementData (Object[10])

size3

"James" "Miranda" "Helen"

names.add("James");
names.add("Miranda");
names.add("Helen");

null null null null null null null

names.addAll(Arrays.asList("Gil", "Trish", "Simon"));
names.addAll(Arrays.asList("Clark", "Jeff", "Sam", "Ed"));

names (ArrayList)

elementData (Object[10])

size10

"James" "Miranda" "Helen" "Gil" "Trish" "Simon" "Clark" "Jeff" "Sam" "Ed"

names.add("Joe");

names (ArrayList)

elementData (Object[15])

size11

"James" "Miranda" "Helen" "Gil" "Trish" "Simon" "Clark" "Jeff" "Sam" "Ed" "Joe"null null null null

Indexed Collections – Capacity Control – Part I

● The values of the initial capacity as well the amount
of growth/increment of the capacity should be taken
from the spec. of the platform in question. Tip: In
practice programmers should not rely on these
specs, but rather control the capacity themselves.

29

29

● We just learned that when the required space of an ArrayList exceeds its capacity, the internal memory is "re-capacitized".

● Of course it is! The idea of the encapsulated array's capacity apart from the collection's size is to defer the need to
"re-capacitize" the encapsulated array to the latest thinkable occasion: When size gets greater than capacity.
– But there is a problem: if we constantly exceed the capacity of a collection, it will often be re-capacitized.

● Yes, we can solve this problem with capacity control!
– One idea of capacity control is to set the required capacity of a collection, before elements are added, e.g. like so:

– Add ten elements; the size will be below the capacity:

– Then we add the eleventh element...

– ...this just meets the capacity of names

– => With capacity control there was no need for "re-capacitation"!

names.addAll(Arrays.asList("James", "Miranda", "Helen", "Gil", "Trish", "Simon", "Clark", "Jeff", "Sam", "Ed"));

int initialCapacity = 11; // Ok, we know in advance that we're going to add eleven elements to names. So we can set the required capacity early!
ArrayList names = new ArrayList(initialCapacity); // E.g. we can specify the capacity right in the ctor.

names (ArrayList)

elementData (Object[11])

size0

null null null"James" null null"Miranda" null null"Helen" null null null null"Gil" "Trish" "Simon"

names.add("Joe");

"Clark" "Jeff" "Sam" "Ed"null"Joe"

1011

Indexed Collections – Capacity Control – Part II

30

30

● Collections (not only indexed collections) often provide a set of methods/properties to control capacity.
– The capacity is the number of elements a collection can store; the size is the actual number of elements a collection contains.

– => This must always be true: capacity >= size.

● Collections may have ctors to set the initial capacity overriding the default capacity, e.g. initializing it w/ a capacity of eleven:

● Some collections allow setting a certain minimum capacity, or to set the capacity directly:

● But names' size is still eleven!

// Java:
ArrayList names = new ArrayList(11);
names.addAll(Arrays.asList("James", "Miranda", "Helen", "Gil",

"Trish", "Simon", "Clark", "Jeff", "Sam", "Ed", "Joe"));

// C#:
ArrayList names = new ArrayList(11); // Set initial capacity to 10.
names.AddRange(new []{"James", "Miranda", "Helen", "Gil",

"Trish", "Simon", "Clark", "Jeff", "Sam", "Ed", "Joe"});

names.ensureCapacity(20); names.Capacity = 20;

boolean hasEleven = names.size() == 11;
// hasEleven = true

bool hasEleven = names.Count == 11;
// hasEleven = true

Performance guideline
● If the effective size of a collection to be created is known ahead,

set the capacity as soon as possible, e.g. in the ctor.
● If memory is low, it can be helpful to set a small capacity for a new

collection or to trim the capacity of existing collections to size.

Indexed Collections – Capacity Control – Part III

● Some IDEs allow enabling a warning during code
inspection, if a collection w/o explicitly specified
capacity is filled.

31

31

● Collections can also be created along with a bulk of data, which can yield performance benefits due to efficient capacitation:
– (Not all platforms apply capacity control on bulk operations!)

● Often collections can also be filled with items in bulk after creation:

Indexed Collections – Capacity Control – Part IV

// Java; instead of adding items to a list with a loop...
List<Integer> numbers = new ArrayList<>();
for (int item : new int[]{1, 2, 3, 4}) {

numbers.add(item);
}

// … the list could be initialized with another "ad hoc" collection like an array:
List<Integer> numbers2 = new ArrayList<>(Arrays.asList(1, 2, 3, 4));

// C#; instead of adding items to a list with a collection initializer or loop...
IList<int> numbers = new List<int>{1, 2, 3, 4};

IList<int> numbers2 = new List<int>();
foreach (int item in new []{1, 2, 3, 4}) {

numbers2.Add(item);
}

// … the list could be initialized with another "ad hoc" collection like an array:
IList<int> numbers3 = new List<int>(new []{1, 2, 3, 4});

// Java; adding a couple of items to a list in bulk:
List<Integer> numbers = new ArrayList<>();
numbers.addAll(Arrays.asList(1, 2, 3, 4))
// Alternatively Collections.addAll() can be used (it is usually faster):
Collections.addAll(numbers, 1, 2, 3, 4);

// C#; adding a couple of items to a list in bulk:
List<int> numbers = new List<int>();
// (Mind that AddRange() isn't available via the interface IList!)
numbers.AddRange(new []{1,2,3,4});

● Java's Collections.addAll() is faster than
Collection.addAll() because the latter creates a
redundant array.

32

32

Thank you!

	Title of Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

